Comparison Between Linear and Nonlinear Prediction Models for Monitoring of a Paperboard Machine

Author(s):  
A. Skoglund ◽  
A. Brundin ◽  
C.-F. Mandenius
2017 ◽  
Vol 16 (2) ◽  
pp. 78-87
Author(s):  
J. M. Jäger ◽  
J. Kurz ◽  
H. Müller

AbstractMaximal oxygen uptake (VO2max) is one of the most distinguished parameters in endurance sports and plays an important role, for instance, in predicting endurance performance. Different models have been used to estimate VO2max or performance based on VO2max. These models can use linear or nonlinear approaches for modeling endurance performance. The aim of this study was to estimate VO2max in healthy adults based on the Queens College Step Test (QCST) as well as the Shuttle Run Test (SRT) and to use these values for linear and nonlinear models in order to predict the performance in a maximal 1000 m run (i.e. the speed in an incremental 4×1000 m Field Test (FT)). 53 female subjects participated in these three tests (QCST, SRT, FT). Maximal oxygen uptake values from QCST and SRT were used as (a) predictor variables in a multiple linear regression (MLR) model and as (b) input variables in a multilayer perceptron (MLP) after scaling in preprocessing. Model output was speed [km·h−1] in a maximal 1000 m run. Maximal oxygen uptake values estimated from QCST (40.8 ± 3.5 ml·kg−1·min−1) and SRT (46.7 ± 4.5 ml·kg−1·min−1) were significantly correlated (r = 0.38, p < 0.01) and maximal mean speed in the FT was 12.8 ± 1.6 km·h−1. Root mean squared error (RMSE) of the cross validated MLR model was 0.89 km·h−1while it was 0.95 km·h−1for MLP. Results showed that the accuracy of the applied MLP was comparable to the MLR, but did not outperform the linear approach.


Author(s):  
Ruofan Liao ◽  
Paravee Maneejuk ◽  
Songsak Sriboonchitta

In the past, in many areas, the best prediction models were linear and nonlinear parametric models. In the last decade, in many application areas, deep learning has shown to lead to more accurate predictions than the parametric models. Deep learning-based predictions are reasonably accurate, but not perfect. How can we achieve better accuracy? To achieve this objective, we propose to combine neural networks with parametric model: namely, to train neural networks not on the original data, but on the differences between the actual data and the predictions of the parametric model. On the example of predicting currency exchange rate, we show that this idea indeed leads to more accurate predictions.


Radio Science ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 989-998 ◽  
Author(s):  
S. V. Fridman ◽  
K. C. Yeh ◽  
O. V. Fridman ◽  
S. J. Franke

2011 ◽  
Vol 22 (12) ◽  
pp. 2406-2408 ◽  
Author(s):  
Bart Baesens ◽  
David Martens ◽  
Rudy Setiono ◽  
Jacek M. Zurada

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mengshan Li ◽  
Suyun Lian ◽  
Fan Wang ◽  
Yanying Zhou ◽  
Bingsheng Chen ◽  
...  

AbstractAs an important physical property of molecules, absorption energy can characterize the electronic property and structural information of molecules. Moreover, the accurate calculation of molecular absorption energies is highly valuable. Present linear and nonlinear methods hold low calculation accuracies due to great errors, especially irregular complicated molecular systems for structures. Thus, developing a prediction model for molecular absorption energies with enhanced accuracy, efficiency, and stability is highly beneficial. By combining deep learning and intelligence algorithms, we propose a prediction model based on the chaos-enhanced accelerated particle swarm optimization algorithm and deep artificial neural network (CAPSO BP DNN) that possesses a seven-layer 8-4-4-4-4-4-1 structure. Eight parameters related to molecular absorption energies are selected as inputs, such as a theoretical calculating value Ec of absorption energy (B3LYP/STO-3G), molecular electron number Ne, oscillator strength Os, number of double bonds Ndb, total number of atoms Na, number of hydrogen atoms Nh, number of carbon atoms Nc, and number of nitrogen atoms NN; and one parameter representing the molecular absorption energy is regarded as the output. A prediction experiment on organic molecular absorption energies indicates that CAPSO BP DNN exhibits a favourable predictive effect, accuracy, and correlation. The tested absolute average relative error, predicted root-mean-square error, and square correlation coefficient are 0.033, 0.0153, and 0.9957, respectively. Relative to other prediction models, the CAPSO BP DNN model exhibits a good comprehensive prediction performance and can provide references for other materials, chemistry and physics fields, such as nonlinear prediction of chemical and physical properties, QSAR/QAPR and chemical information modelling, etc.


Sign in / Sign up

Export Citation Format

Share Document